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ABSTRACT

Nimbus-7 cloud and Earth radiation budget data are compared in a study of the

effects of clouds on the tropical radiation budget. The data consist of daily

averages over fixed (500 km) 2 target areas, and the months of July 1979 and

January 1980 were chosen to show the effect of seasonal changes. Six climate

regions, consisting of 14 to 24 target areas each, were picked for intensive

analysis because they exemplified the range in the tropical cloud/net radia-

tion interactions. The normal analysis was to consider net radiation as the

independent variable and examine how cloud cover, cloud type, albedo and

emitted radiation varied with the net radiation. Two recurring themes keep

repeating on a local, regional, and zonal basis: the net radiation is

strongly influenced by the average cloud type and amount present, but most net

radiation values could be produced by several combinations of cloud types and

amount.

The regions of highest net radiation (greater than 125 W/m 2) tend to have

medium to heavy cloud cover. In these cases, thin medium altitude clouds

predominate. Their cloud tops are normally too warm to be classified as

cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans

are large regions where the total regional cloud cover varies from 204 to 904,

but with little regional difference in the net radiation. The monsoon and

rain areas are high net radiation regions. The deep convective storm centers

tend to have low, often highly negative, net radiation, but these are sur-

rounded by large areas of high net radiation covered by thin medium and high

level clouds. Large regional differences in the net radiation caused by

varying cloud cover and type do, however, occur in the tropical oceans. The

most noticeable difference is between continental land and ocean regions. The
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net radiation is considerably higher over the oceans. The largest lon-

gitudinal variations in net radiation in July and January occur in high solar

insolation regions somewhat poleward of the subsolar point. Over the oceans,

net radiation maxima are associated with an average cloud cover of thin mid-

altitude clouds, while minima are associated with bright low-altitude clouds.

The largest differences, over I00 W/m 2 are between the ocean maxima and the

deep minima over the continental deserts. Over the deserts during the summer,

however, cloud variations appear less important than regional variations in

the surface albedo.
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i. INTRODUCTION

The Nimbus-7 Earth Radiation Budget (ERB)and cloud data sets are compared in

the tropics for the months of July 1979 and January 1980 to study the effect

of clouds on the tropical radiation budget. A knowledge of the effects of

clouds on the Earth's radiation budget is important both for accurate medium-

range weather forecasting (Slingo, 1987) and for studying possible climate

change. General circulation models (GCMs)are the basic tools used in these

studies, but the accuracy of their predictions depends on the validity of the

physics equations and parameters used. A weak point, at present, is the way

GCMstreat clouds. Cess and Potter (1987) comparedthe estimates of the

effects of clouds on the radiative budget as determined by six different

general circulation models (GCM°s)and found a considerable lack of agreement.

Eachmodel incorporated a unique set of model physics and numerical configura-

tion. The problem is complex both because of the multiple effects clouds can

have and because in the past there was a scarcity of reliable global observa-

tions.

It has been proposed (Platt, 1981) that tropical cirrus clouds tend to

increase net radiation (absorbed minus emitted) while the presence of deep

convective or low clouds (Hartmann and Short, 1980) will decrease the net

radiation. Recent studies by Ardanuy et al. (i989a) and Ramanathanet al.

(1989) indicate that clouds do decrease the absorbed net radiation on a global

scale. However, regionally the decrease is most prominent at high latitudes

in the summerhemisphere. There, optically thick and relatively low cloud

fields sharply increase the albedo while only moderately decreasing the

outgoing longwave radiation (OLR). In the tropical rain belt, the high cloud

tops tend to be both bright and cold. In the mean, the increase in the albedo
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caused by these clouds tends to be balanced by the decrease in the OLR. The

problem of the overall effect of clouds on the radiation budget comesdown to

an examination of cloud types and cloud climatological statistics.

The availability of new global data sets such as the Nimbus-7 ERB(Jacobowitz

et al., 1984) and cloud (Hwanget al., 1988) results allow a better look both

at the complexity of the problem and at global statistics. Someof our

colleagues (Ardanuy et al., 1989a,b) are using the two data sets to examine

the global statistics. They use an analysis schemewhich comparesclear-sky

and average (all) sky radiance fields. Ramanathanet al. (1989) also studied

the problem by comparing clear-sky and all-sky radiances. The latter group

used data from the new Earth Radiation Budget Experiment (Barkstrom et al.,

1989).

In this paper we restrict ourselves to a comparative study of the complex

interaction between clouds and net radiation in the tropics. Wedo not

consider a clear-sky case, but rather consider various types of clouds and

varying amounts of cloud cover. Our purpose is to illustrate the wide range

of interactions between clouds and the radiation budget that occur in the

tropics. Our general approach and analysis schemewill be outlined in Section

2. Data characteristics and sources are discussed in Section 3. The reader

is warned that there is someconfusion concerning clouds. An aircraft pilot

and a theoretical modeler tend to think about and discuss clouds in somewhat

different ways and terminologies. Further, a ground observer, an aircraft

pilot, and a satellite sensor often makedistinctly different observations of

the samecloud field. This problem is discussed in Section 3. An overview of

the Earth's net radiation budget and cloud fields (60°N to 60°S) is given for

July 1979 and January 1980 in Section 4 with emphasison the tropics. For six
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tropical and subtropical study regions, the relationship between cloud cover,

cloud type and net, top-of-the-atmosphere radiation is analyzed for the months

of July 1979 and January 1980 in Section 5. The general variations in the

relationship in the tropics are discussed in Section 6, while conclusions and

discussion appear in Section 7.

2. ANALYSISSCHEME

In this study, we use a comparative procedure to examinehow the regional

radiation budget varies with changing cloud amountand cloud type. Emphasis

is given to how changes in the cloud cover effect the net radiation. In

remote sensing experiments the net radiation is determined by the equation:

NR- SI (SW+ LW) <1)

where:

NR

SI

LW

SW

net radiation

solar insolation (diurnal average)

diurnally averaged OLR

diurnally averaged reflected shortwave (solar) radiation

The measured quantities are SI, LW, and SW. Physically, of course, the net

radiation is as real a quantity as any of the others. In fact, we will find

in Sections 4 and 5 that many combinations of cloud amount and type, and hence

of SW and LW, can produce the same net radiation. To emphasize this fact, we

will commonly use the net radiation as the "independent" variable in plotting

regional results.
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In the Nimbus ERB data set, the diurnally averaged albedo, A, is given instead

of SW. The relationship is:

SW - A,SI (2)

We therefore can transform Eq.(1) to the form:

(A, SI + LW) - SI - NR (3)

Much of our analysis of regional data will be based on Eq,(3).

The Nimbus ERB and cloud data we use come in the form of daily and monthly

averages over a global grid of roughly equal area, (500 km) z, regions called

target areas (TAs). The two data sets were formed from simultaneous measure-

ments from instruments on the Nimbus-7 satellite. From the ERB data set come

diurnally averaged albedo, outgoing longwave, and net radiation. From the

cloud data set we use both day and night values of the percentage of the

target area that is covered by clouds whose tops can be classified as high,

middle, or low.

cloud fraction.

Section 3.

The sum of the high, middle, and low clouds gives the total

More details concerning these two data sets are given in

Using monthly averages, the characteristics of the net radiation and total

cloud fields are examined for July 1979 and January 1980, in Section 4.

Particular emphasis is placed on the tropics. Six regions (see Figure 5) are

designated for more detailed study in Section 5. A given study region

contains 14 to 23 target areas whose monthly means indicate similar total

cloud cover and net radiation. Four ocean and two land regions are included.
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For each study region the daily data for a given month are reviewed to see how

albedo, OLRand net radiation vary with total cloud cover and with cloud type.

After rejecting days in which someof the Earth radiation budget or cloud

parameters are missing, the study regions have 300 to 430 target area days of

data per month.

3. DATASOURCES

General descriptions of the Nimbus-7 data sets used are given for the Earth

radiation budget by Kyle et al. (1985) and for the clouds by Hwanget al.

(1988). Daily estimates of fractional clear, low ((0 to 2 km), mid (2 to 7

km), and high (above 7 km) altitude cloud cover near noon and midnight for

fixed (500 km)z target areas are available. There are 2070 target areas (TA)

which cover the globe. A special "cold and dim" subset of the mid and high

altitude daytime clouds are termed cirrus clouds. A second, "cold and very

bright", subset of the daytime high altitude clouds are called deep convec-

tive. Wewill follow the terminology of Stowe et al., (1988, 1989) and the

reader is warned that in this paper the terms cirrus and deep convective have

the definitions given above. The clouds in question mayor maynot be called

cirrus or deep convective by a ground or aircraft observer. The ERBscanner

data are available on the same(500 km)2 TA basis, and the observations were

taken within minutes of the cloud measurements. The ERBproducts include noon

and midnight outgoing longwave radiation (OLR)measurementsand daily averaged

values of the albedo, OLR, and net radiation.

During daylight hours, the Nimbus-7cloud identification schemeuses a

bispectral algorithm utilizing 11.5 _mradiances from the Temperature Humidity

Infrared Radiometer (THIR) and 0.37 #mreflectivities from the Total Ozone
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Mapping Spectrometer (TOMS)both on the Nimbus-7 satellite. In the dark, only

the 11.5 #m radiances are available. Stowe et al. (1988) report that the 0.37

#m reflectivities are chiefly used to identify low clouds with little thermal

contrast with the surface. At nadir, the footprint sizes are, respectively,

(6 km)2, (50 km) 2, and (90 km) 2 for the THIR, TOMS, and ERB scanners. The

THIR 11.5 _m channel, thus, has the best resolution and should do the best job

of resolving cloudy and clear regions. Each of its measurements does,

however, integrate radiances over an area of 36 km 2 or larger. Because of the

lack of fine detail in the measurements, some scientists (see for instance

Susskind et al., 1987) use the term "effective cloud fraction" for the

retrieved clouds. Both the cloud fraction and the 11.5 _m radiance associated

with the cloud top are given. From the blackbody temperature derived from the

11.5 _m radiance, an "effectiye" cloud top altitude can be derived from

regional climatological lapse rates. Only the general altitude descriptors of

low, medium, and high are given in the data set. For broken or very thin

clouds, the "effective" cloud top will be somewhat lower than the physical

cloud top.

There are some difficulties involved with constructing cloud climatologies for

general use. Scientists trying to incorporate cloud algorithms in GCMs want,

for the radiative transfer routines, information on global and regional cloud

amount, mean albedo, ice/water phase, and cloud top and bottom temperatures

and emissivities. In addition, latent heat release, rainfall rates, and cloud

layer information are important. To date, no climatology covers all of these

features, and even the mean global cloud cover is not well established (see

Stowe et al., 1989). Traditional cloud atlases classify clouds by their

visible, to the human eye, characteristics (see for instance WMO, 1969).

These classifications are related to various weather situations but give, at
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best, only qualitative information concerning the physical cloud properties

modelers now desire. Only satellite sensors can yield consistent, continuous

mapsof global cloud cover. The Nimbus-7 cloud data set and the International

Satellite Cloud Climatology Project (ISCCP) (Schiffer and Rossow, 1983) are

two such data sets. However, these data sets also fail to yield muchof the

desired information. In particular, only the cloud tops are observed and

there is no information concerning cloud bases and multiple cloud layers. In

addition, present satellite data sets are neither entirely consistent with one

another (see for instance Stoweet al., 1989) nor with ground-based observa-

tions (Henderson-Sellers et al., 1987).

Fortunately, in our present study we do not need most of the information

desired by weather and climate modelers. Our purpose is to examinehow top of

the atmosphere regional radiation budgets vary with changing cloud cover. To

someextent, this can be examinedusing only the Earth radiation budget albedo

and OLRmeasurements. This was the procedure followed by Ramanathanet al.

(1989) in their cloud radiative forcing study. However, the addition of

concurrent cloud estimates to the study adds more quantitative information

concerning cloud types and amounts and how they affect the albedo and OIA.

The Earth radiation budget products are derived from the Nimbus-7 ERBscanner

measurements(Jacobowitz et al., 1984). Kyle et al. (1985, 1986) report some

problems with the original products. The scanner longwave fluxes are about 3

W/m2 too low due to an error in a calibration coefficient, while the albedos

are about 12% (three and one-half albedo units) too high, apparently due to

the difficulty in differentiating between clear and cloudy scenes (Arking and

Vemury, 1984). These errors were verified both from internal evidence and

through comparison with both the ERB wide field of view measurements and with
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the new Earth Radiation Budget Experiment (ERBE)results (Barkstrom et al.,

1989). These latter two results agree fairly well on the global means (Kyle

et al., 1990). The errors in the ERBscanner longwave and albedo products

oppose each other thus reducing the resultant error in the net radiation. The

global meanannual value for the net radiation is -3.2 W/m2 compared to a

preliminary estimate of about +5 W/m 2 from the new ERBE products. However,

the best theoretical value for the annual average energy gain is zero,

therefore, Barkstrom et al. list their probable error at about ±5 W/m 2. Thus,

despite the errors in the Nimbus-7 scanner shortwave and longwave products,

the derived net radiation appears quite reasonable.

The Nimbus ERB Processing Team is reprocessing the scanner data to correct the

known defects in the longwave and albedo products (Groveman et al., 1988). A

procedure similar to that discussed in Arking and Vemury (1984) has been used

to produce monthly averaged target area values of the albedo, OLR, and net

radiation. The radiances are sorted by their satellite zenith angle and the

viewing azimuth angle and then are converted to fluxes by direct numerical

integration. This method is named the Sorting into Angular Bins (SAB)

algorithm. The SAB mean global net radiation for July 1979 is similar but

algebraically slightly smaller than the new ERBE value for July 1985. In

other months, however, the SAB value was the larger. There is, of course, a

six-year difference in the Nimbus-7 scanner and the ERBE measurement times.

While the SAB net radiation values are about I0 W/m 2 higher than the original

Nimbus-7 scanner products, the same qualitative regional variations appear in

the global maps. This is illustrated in Section 4 where the two results are

first compared and then utilized for a comparison Of the cloud and Earth

radiation budget monthly averaged fields. For the more detailed regional

studies, in Section 5 we have used the available daily values from the old ERB
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scanner products. Because our principal interest is in relative comparisons,

we have made no attempt to correct the old products.

Two temporal sampling problems occur. While the THIR was on continuously to

detect clouds, the ERB instrument was on a three-day-on/one-day-off schedule.

Thus, only about 23 days of ERB data are available in a normal month for each

TA. Also some of the ERB and/or cloud products are missing from some TA's on

various days. To obtain larger measurement samples for statistical evalua-

tion, the targets are grouped in regional blocks of about 20 TA's each. The

TA's in a given region are chosen to have roughly similar cloud and net

radiation characteristics. After rejecting TA days with some data missing,

each region normally has between 300 and 450 TA days available for analysis.

A second problem is the fact that in the low and mid-latitudes most target

areas are observed only twice a day, once near noon and once near midnight.

In a recent comparison of Nimbus ERB wide field of view measurements with

contemporary ERBE results, Kyle et al. (1990) found excellent agreement in the

mean. The ERBE products were produced using data from two satellites one of

which is non-Sun-synchronous and views low and mid-latitude regions at all

hours of the day and night over a period of 37 days. Regionally, some errors

in the Nimbus ERB diurnal averages are expected to occur because of the

limited diurnal sampling. However, the top-of-the-atmosphere solar irradiance

is at a maximum at the local noon observing time. Thus, it is particularly

important to observe the effect of clouds on the albedo and OLR at this time.

The cloud diurnal averages are affected both by the temporal sampling problem

and by the use of both 11.5 _m and 0.37 _m radiances to identify clouds during

the day but only the 11.5 >m radiance at night. Even during daylight the 0.37

#m reflectivities are used chiefly to identify low clouds. Low cloud tops
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have little thermal contrast with the surface and thus 11.5 _m radiances

cannot be used to accurately identify them. The noon to midnight variations

in the mid and high level clouds should be represented fairly accurately in

the data set but, in the data we use, the noon to midnight low cloud amount

changes are suspect.

Due to these problems with the Earth radiation budget and cloud data sets we

used, our results should be treated as basically qualitative in nature. The

numbers discussed in Section 5 and Tables i to 3 will be modestly modified in

the future as more accurate data become available. In particular, the albedos

will, in most cases, be reduced slightly.

4. THE TROPICAL NET RADIATION BUDGET

Figure la and Ib show the Nimbus-7 ERB net radiation map for July 1979 as

derived respectively from: (a) the Sorting into Angular Bins (SAB) data set

and (b) the original scanner products. Qualitatively, they show the same

overall patterns, but the SAB and original global means are, respectively,

-4.2 W/m 2 and -13.6 W/m 2. As discussed in Section 3, we expect correct net

radiation values to lie between these two results. There are, of course, some

regional variations in the differences between the two results. Note the row

of local maxima and minima at about 25°N latitude. The positions of the

maxima shift slightly from one map to another and relative differences in the

peak values vary by over I0 W/m 2. However, the same qualitative pattern of

maxima and minima appear on both maps. In discussing the regional differences

in the net radiation field we will, in this section, use the SAB results.
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The Southern Hemisphere is an energy sink from IO°S latitude to the South

Pole. Positive net radiation increases from 10°S latitude to a maximum near

23°N and then slowly declines again towards the North Pole. There is,

however, considerable longitudinal structure in the net radiation, and this is

particularly so at about 25°N. The major difference is, of course, between

the land and ocean as pointed out previously by Randel et al. (1984) and Kyle

et al. (1986). Negative net radiation values in the Sahara in July were

reported by Raschke and Bandeen (1970). Note the maxima of 130 W/m 2 or larger

south of Japan, near the date line, and north of the Dominican Republic. Then

note the minimum of -12 W/m 2 in the eastern Sahara. Also note, however, the

local minimum of 40 W/m 2 in the Pacific just west of Baja, California.

Figure 2 is the Nimbus-7 total noontime cloud cover map for July 1979 derived

from the Nimbus-7 cloud data. Over the ocean the net radiation maxima

mentioned above occur in regions of about average cloudiness (30% to 60%), but

so does the minimum off Baja California.

Figures 3 and 4 show the net radiation and total cloud cover for January 1980.

In January, the Northern Hemisphere above 15°N latitude has become a heat

sink, while the Southern Hemisphere shows positive net radiation even beyond

60°S latitude. At about 30°S latitude a row of hot spots in the Pacific,

south Atlantic, and Indian Oceans occur which are again associated with

moderate to average cloud cover.

In the present study we pick six tropical regions to study the varying

interrelationships between clouds and net radiation. These regions, iden-

tified in Fig, 5, represent the range of interactions that occur in the

tropics and subtropics. The general radiation and cloud characteristics of

these regions are shown in Table I. The radiation values shown were derived
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from the old Nimbus-7 scanner products during the analysis discussed in

Section 5.

OceanRegions A and B lie just south of the Equator, receive roughly equal

amountsof top-of-the-atmosphere insolation, and during these two months (July

1979 and January 1980) have nearly equal net radiation. However, Region A is

part of the tropical rain belt around Indonesia and has moderate cloud cover

in July and heavy cloud cover in January. On the other hand, Region B lies in

the perennial high pressure region west of South America and has below average

cloud cover in both July and January.

Region C includes the July high net radiation region in the ocean east of

Taiwan, while Region D includes the local minimumoff Baja California. In

July, they receive about the samesolar insolation and during the day the

total cloud fraction is the same. However, Region C with relatively thin mid

and high level clouds has a net radiation of 117.4 W/m2, while Region D with

brighter, low level stratus clouds has a net radiation of 66.8 W/m 2. Note

that noon and midnight OLR for Region D are nearly identical, and the same is

true for Region C. Thus, any average noon to midnight shift in the cloud

cover is not affecting the OLR.

Regions E and F lie on the land. Region E includes the central Sahara and

Arabian deserts, while Region F covers the Congo rain forest and straddles the

Equator. Thus, the solar insolation at Region E is considerably larger in

July than in January, while the insolation at Region F is only 3_ smaller in

July than January. However, the cloud cover over the Congo region is about

60_ versus about 14_ over the central Sahara. Regions E and F represent
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tropical extremes in the relationship of clouds and net radiation over land.

A more detailed analysis of these three pairs of regions is given below.

5. ANALYSISOF SELECTEDREGIONS

5.1 Procedures

Daily cloud and Earth radiation budget parameters are comparedon a target

area, (500 km)2, and regional basis. For each region and month, 12 net

radiation bins are set up. The net radiation range from -125 to +125 W/m2 is

divided into ten bins each 25 W/m2 wide. The two additional bins are net

radiation <-125 W/m2 and net radiation >125 W/m2. A matrix is formed by

considering four total cloud categories for each net radiation bin. These

are: percent total target area cloud cover; total cloud cover <204; _204 and

!804; and >804. The characteristics of the clouds in each net radiation bin

are then analyzed.

Changesin cloud amounts and/or cloud properties can affect the net radiation.

Normally the albedo of clouds is higher than that of the underlying surface.

Thus, a decrease in cloud optical thickness and/or in cloud amount tends to

decrease the albedo. The higher the cloud altitude the colder the cloud top

temperature. Thus, decreasing the cloud top altitude and/or the cloud amount

in the tropics tends to increase the OLR. It follows that increasing cloud

top altitude and decreasing cloud optical thickness will increase the net

radiation in a region. On the other hand, decreasing cloud top altitude and

increasing the optical thickness will decrease the net radiation. These

points should be kept in mind as the three pairs of study regions are

reviewed.
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5.2 Southern Tropical Ocean, Regions A and B

These two regions (see Fig. 5) lie just south of the Equator between 0° and

18°S latitude. They receive about the sameinsolation and absorb approxi-

mately the sameamountof net radiation (see Table i), but their climate and

cloud cover are very different. As Table I indicates, our samples from Region

A (Indonesian rain belt) show a 419 average cloud cover in July 1979 when the

Sun is north of the Equator, but nearly 909 cloud cover in January 1980.

Further, most of the cloud tops were classified as middle or high in both

months. In the Nimbus cloud classification, equatorial high cloud tops are

over 7 km above sea level, while mid-cloud tops lie between 2 km and 7 km.

Region B (eastern Pacific high pressure area) has an average cloud cover of

21_ in both months and about half the cloud tops are classified as low. The

amount and types of clouds present over the tropical ocean depend not just on

the absorbed solar energy, but also on sea-surface temperature and general

atmospheric circulation patterns (see, for instance, Emanuel, 1988). The sea-

surface temperature is normally lower in Region B than in Region A.

Figure 6 compares for July 1979 the effect of cloud cover on the measured

daily top-of-the-atmosphere net radiation for both regions. The total cloud

cover is divided into three ranges: relatively clear (09 to 209), partly

cloudy (209 to 809), and overcast (809 to i00_) target areas. In the rela-

tively clear areas, the existing clouds are almost always low or middle

clouds. In the Indonesian region (A), the partly cloudy TArs show a mixture

of low, mid, and high cloud tops with the mid-clouds dominating for high net

radiation and the high clouds for low net radiation. The overcast areas are

chiefly a mixture of high and mid-clouds with the high clouds dominating for
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high net radiation (note the increase in cloud fraction at both high and low

net radiation). In the western Pacific region there are no overcast regions

and almost no high clouds. The cloud tops are slightly higher in the partly

cloudy areas comparedto relatively clear areas. The high energy (75 to I00

W/m2) entry in Region B represents a single TA-day with iI_ cloud cover during

the day followed by 76_ cloud fraction (mostly mid and high) at night.

The average albedo and OLRare shownin Fig. 7 for these three cloud cover

categories as a function of the net radiation. If all clouds were uniform in

albedo and height, then the variations shownin Fig. 7 would reflect changes

in cloud fraction. In fact, cloud top temperatures, albedos, and fractions

all vary. These plots help illustrate the theme that both cloud type and

fraction must be known in order to estimate the effects of the clouds on the

net radiation. In Region A, for partly cloudy and overcast areas, both the

albedo and OLRdecrease as the net radiation increases. This is an optimal

situation for high net radiation. More solar energy is absorbed, but less low

temperature, longwave radiation is exhausted to outer space. This is done by

increasing cloud fraction and cloud top altitude but decreasing cloud albedo.

In Region B, the OLRis always relatively high and high net radiation is

associated with low albedos. It should be noted that in July the Sun is north

of the Equator and that TA's just south of the Equator receive a meansolar

insolation of 385 W/m2 (averaged over 24 hours), while the TA's between 13.5

and 18°S latitude have a meaninsolation of only 317 W/mz. Due to the Sun

being lower in the sky, these more southerly TA°s also have a slightly higher

albedo for identical cloud cover situations. Thus, in J,'ly the TA's farther

south have a lower average net radiation than do those nearer the Equator.

Hence, someof the spread observed in the graphs is due to the range in

latitudes included in the study regions. However, the basic interrelationship

15



between clouds and net radiation shownin these figures is also seen in the

individual TA's.

Figure 8 showsa plot of net radiation, albedo, and total noontime cloud cover

versus day of the month for target area 903 for July 1979. This is one of the

twenty target areas in Region B. On July 2, the first combined observation

day, the net radiation has a low value of -56.9 W/m2 and associated albedo and

noontime cloud cover of 34.39 and 56.09, respectively. A maximumnet radia-

tion of +33.4 W/m2 occurs on July 27 with associated albedo and noontime cloud

cover of 12.59 and 12.09, respectively. Normally albedo and cloud cover

variations are in phase with higher values associated with low net radiation

and vice versa. The diurnally averaged OLR ranges only from 290 to 303 W/m 2

during the month. However, %ts variations are not strongly related to changes

in net radiation. On the minimum and maximum net radiation days, July 2 and

27, the OLR is, respectively, 291 and 292 W/m 2. An anomaly, with albedo and

cloud cover out of phase, occurs on July II. The net radiation hits a local

maximum of 24.2 W/m 2, while the total noon cloud cover increases to 319 with

219 classified as mid-cloud and 10% as low cloud. The diurnal OLR drops some

I0 W/m 2, but the albedo changes very little. The presence of the thin, rather

low and warm, mid-level cloud appears to have caused the local maximum in the

net radiation.

Figure 9 is a similar plot for target area 926 in Region A for January 1980.

In this case, the net radiation ranges from -82 to +164 W/m 2, but the total

noontime cloud cover is over 90% except on the last two days of the month when

it drops to about 50%. High cloud tops dominate except for a few days when

mid-clouds are more abundant. Few low clouds can be identified because of the

high cloud screen. In general, albedo increases are associated with decreases
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in the net radiation and vice versa. This plot indicates that changes in

cloud type and thickness can be as important as cloud amount. Three times

during the month the net radiation exceeds 160 W/mz. On the first two days,

July 3 and 20, the noon cloud cover is 97%and 88_, respectively, while the

albedo is close to 25_ and the OLRis about 180 W/m2. On July 31, however,

the noon cloud cover drops to 49_ and the albedo to 14_, while the diurnal OLR

rises to 224 W/m 2.

Figure i0 shows cloud cover versus net radiation for the two regions in

January when the Sun is south of the Equator. Note in Table I that both the

top-of-the-atmosphere insolation and the net radiation have increased by

approximately i00 W/m z in both regions. Also, note the different distribu-

tion in net radiation measurements between the two locations. In the ocean

around southern Indonesia, 41% of the measurements indicate net radiation

greater than 125 W/m 2, and the majority of these show overcast conditions.

However, a few of the measurements extends beyond -75 W/m 2. The net radiation

measurements in Region B, in the eastern Pacific, are grouped fairly tightly

about the mean value of 107.9 W/m 2. Only 16.9% of measurements show net

radiation greater than 125 W/m 2 and only 5.7% of these belong to the

relatively clear category. Thin (relatively dark) cool or cold clouds do

appear to increase the net radiation here also.

Sizable diurnal cloud variations occur in some regions. Houze et al. (1981),

Johnson and Priegnitz (1981), and Williams and Houze (1987) report that in

December 1978 in the ocean off the coast of north Borneo, rain cloud systems

would start to form about midnight, peak before noon, and then start to

dissipate. Over northern Borneo, however, the cycle reversed and the maximum

precipitation occurred near local midnight. Diurnal variations change from
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place to place, of course, both over land and ocean (see for instance Kyle et

al., 1986).

Perfect daily averages cannot be expected from noon and midnight measurements

from either the cloud or Earth radiation budget products. This is particular-

ly true if individual days are considered. On a monthly basis, however, Kyle

et al. (1990, Fig. 14) found that for April 1985 the Earth radiation budget

products from just the Sun-synchronousNOAA-9satellite yielded regional

diurnal averages within i_ to 5_ of those obtained from the combined ERBSand

NOAA-9satellite measurements(Barkstrom et al., 1989). Somewhatcruder

diurnal models were used to derive the daily Nimbus-7 Earth radiation products

used in this study than were used in the later experiment (see Wielicki and

Green, 1989). Thus, errors of several precent mayoccur in our monthly

results while even larger errors maybe present in someregions. These

diurnal averaging errors in the Nimbus-7 data set are besides the calibration

and algorithm errors mentioned in Section 3.

Figures lla and llb show the albedo and OLRassociated with each of the cloud

cover categories as a function of the net radiation. In Region A, the rain

region, bright cold (deep convective) tops are associated with low, often

negative, net radiation. However, these storm centers are surrounded by large

areas of thin middle and high altitude clouds associated with high values of

net radiation. This results in a high average net radiation. In Region B,

the few clouds present also appear, in the mean, to be relatively neutral.

Note from Fig. 10b that a cloud cover minimumof 144 occurs for the 75 to I00

W/m2 bin and that cloud cover increases for both higher and lower net radia-

tion. However, in Fig. lib, the albedo decreases monotonically as the net

radiation increases.
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The types of clouds observed in the two regions at noon during January 1980

are shown in Figs. 12a and 12b as a function of the net radiation. Recall

(Section 3) that the cirrus category is a low albedo subset of the high clouds

together with the colder mid-altitude clouds, while deep convective is a high

albedo subset of just the high clouds. The cirrus and deep convective subsets

can be identified only during the day when the TOMS0.37 _mreflectivities are

available (Stowe et al., 1988). In Region A, cloud cover approaches 1004 for

low net radiation, with high cloud cover alone being over 804. However, for

high net radiation, mid-clouds becomeas plentiful as high clouds and for net

radiation over 125 W/m2, mid-cloud is the dominant type. The last three net

radiation bins (-25 to -I00 W/m2) each contain only one TA-day sample (Fig.

10a). Deepconvective clouds are prominent in these bins, but these bins have

little impact on the monthly averages. The cirrus clouds cover between i0_

and 20_ of the area at most values of the net radiation, but there is no

marked increase in identified cirrus clouds at high net radiation.

For net radiation greater than 125 W/m2, the total noon cloud cover is 74.1_,

which is broken into high (27.0_), mid (40.9_), and low (6.3_). The deep

convective cloud cover is 2.1_ and the cirrus is 19.5_. This leaves a cloud

cover of 52.5_, most of which either acts to increase the net radiation or is

neutral. Apparently, the dominant mid-cloud, which has a low albedo, was

considered too warmby the Nimbuscloud algorithm (Stowe et al., 1988) to be

classified as "cirrus." Someof it, of course, maybe high, very thin cirrus

which pass considerable surface radiation and, therefore, are classified as

rather warmmid-level cloud. Prabhakara et al. (1988) report that an infrared

spectral signal associated with thin cirrus is prominent in this region in

Decemberand January.

19



Figure 12b shows the patterns found in the eastern Pacific high pressure

region (B). Here there are few high clouds of any type, while mid and low

clouds appear in about equal amounts, except in the few low net radiation

regions where mid-altitude clouds dominate. Noontime cloud cover passes

through a minimumof 15_ for net radiation between 25 and I00 W/m2 and then

increases again up to 25_ for net radiation greater than 125 W/m2. However,

the identified cirrus cloud cover is only 0.7_ for these warm regions. This

suggests that in the tropics thin water clouds may be at least as important as

thin cirrus in creating high net radiation regions.

Comparing July and January we see Regions A and B sharply increase their net

absorbed energy in January by very different paths. In Region A the cloud

cover doubles, high cloud tops increase over 500_, the albedo rises from 22_

to 35_, but the OLR drops from 264 W/m 2 to 189 W/m 2, In Region B, the cloud

cover remains at about 21_, the albedo actually decreases from 15.3_ in July

to 14_ in January while the OLR also slightly decreases from 292 W/m 2 to 283

W/m 2. The decrease in albedo may be mostly associated with the Sun being

higher in the sky in January (see Taylor and Stowe, 1984), while the OLR

reduction is probably related to a modest increase in cloud top altitudes.

5.3 Northern Subtropical Ocean, Regions C and D

Here we consider two ocean regions, both with medium cloud cover, but in July,

Region C, in the western Pacific, has above average net radiation while Region

D, off Baja California, is a net radiation minimum area. Thin mid-altitude

stratus are the dominant clouds in Region C while thicker and lower stratus

prevail in Region D. In January, the top-of-the-atmosphere insolation
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decreases sharply and the two areas no longer stand out on the net radiation

map (Fig. 3).

Region C lies between latitudes 18°N and 27°N and stretches from below Japan

eastward towards the date line. In July 1979 (see Table I) it had an average

cloud cover of 58_ with high and mid-altitude clouds predominant. The

relatively low albedo indicates that most of the clouds are fairly thin and

perhaps broken in nature. Only in a few cases do bright deep convective cloud

appear. This results (Fig. 13a) in a high average net radiation of 117.6

W/m2, with 80_ of the TA-days yielding net radiation in excess of i00 W/m2.

The corresponding values of the albedo and OLRappear in Fig. 14a.

Table 1 indicates that there is very little difference in the noon and

midnight OLRalthough the cloud cover increases from 51_ at noon to 64_ at

midnight. Note, however, that 7_ of this increase is classified as low

clouds. Nowthe noon clouds reported in Table i were identified using both IR

radiances and UV reflectivities, while only the IR radiances were available at

midnight. The UV reflectivities were used chiefly to identify warm low

clouds. Therefore, Stowe et al. (1989) indicate that while diurnal variations

shownin mid and high clouds are fairly trustworthy, those shown in low clouds

maybe principally due to the presence or absence of the UV reflectivities.

About 42_ of the TA-days showa net radiation greater than 125 W/m2, and for

these TA-days the average noontime cloud cover is 40_ versus 62_ at midnight.

At noon, high cloud cover is only 6_, with cirrus also identified as 6_.

Again, the majority of clouds in the high net radiation regions are thin (low

albedo) but with too warm longwave cloud top radiances to be classified as

cirrus.
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The associated albedo and OLRfor Region C are shownin Fig. 14a. The

characteristic decrease in albedo with increasing net radiation appears

together with a moderate increase in the OLR. Note in Fig. 13a the monotonic

decrease in total cloud cover as the net radiation increases. However, the

cloud cover averages 50_ or more even for net radiation greater than 125 W/m2.

Region D lies in the ocean west of Baja, California in about the samelatitude

range as Region C. In July it receives essentially the sameinsolation. It

also has a moderate cloud cover, but fairly low level clouds dominate. Note

the increase from Region C to Region D in both the albedo and the OLR. Thus,

the Region D net radiation of 67 W/m2 is 50 W/m2 less than that of Region C.

Figure 13b shows, for Region D, the distribution of TA-days versus net

radiation. It is a relatively flat distribution for positive net radiation

but with only one measurementbelow -50 W/m2. This is opposed to a rather

sharply peaked high energy distribution shown in Region C (Fig. 13a). In Fig.

14b, the OLRshows the small range associated with low cloud regions. Both

the cloud cover (Fig. 13b) and the albedo decrease with increasing net

radiation.

In July, Regions C and D represent extremes in the effect of tropical oceanic

clouds on the net radiation (see Fig. I). In Region C, the dominant thin mid

and high level clouds tend to either aid the net radiation or be neutral,

while in Region D the thicker, rather low clouds sharply reduce the net

radiation.

In January, these two regions no longer stand out on the net radiation map

(Fig. 3). The meansolar insolation has dropped by about 170 W/m2, and both
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regions now are similar heat sinks with a net radiation of about -60 W/m2.

Interestingly, the change in net radiation in Region C is just slightly

greater than the change in the top-of-the-atmosphere insolation, while in

Region D the change is only about two-thirds of the insolation range. Note in

Table 1 that Region C now shows more low cloud tops than does Region D. There

has been little change in the total cloud cover in either region, but both

cloud type and the solar insolation have changed. The albedo increases in

both regions and some of this increase is due to the larger solar zenith

angles. However, the increase is noticably larger in Region C indicating an

increase in cloud optical thickness. In Region C, the OLR increases by 27

W/m 2 indicating lower effective cloud tops, while in Region D it drops by 27

W/m 2 signalling an increase in the effective cloud top altitude.

These two regions, with roughly equal cloud cover, illustrate the varying

effect of different cloud types on the net radiation. In winter both are heat

sinks, with somewhat different cloud types that yield the same net radiation.

In the summer high, thin clouds make Region C an efficient heat absorber, but

the low, relatively thick clouds in Region D make it a poor heat absorber.

5.4 Land: Desert and Tropical Rain, Regions E and F

Land regions tend to be more variable than ocean regions, and the Sahara and

Arabian deserts appear in extreme contrast to the African portion of the

equatorial rain belt. Water has a high heat capacity and ocean regions have

the potential to store large amounts of heat, move excess heat by convection,

and dissipate it by evaporation. Evaporation puts water vapor into the air,

changing the air's physical properties including its ability to absorb and

transmit radiation. In addition, the probability for cloud formation is
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enhanced. Rain forests contain large amountsof water and, thus, to a large

degree share these characteristics with ocean regions. Deserts, however, are

normally dry with low heat capacity and heat storage capabilities. Thus, they

react quickly to the presence or absence of solar radiation. They use wind

and radiative cooling as the major meansof disposing of excess heat. Because

of the lack of moisture it is relatively difficult over the desert to create

local cloud fields.

Lying at different latitudes, the insolation in Region E (central Sahara)

decreases by 354 from July to January, while that in Region F (rain belt)

increases by 44 (see Table i). Therefore, it is not surprising that their

seasonal changes are not in phase. It should be noted that Region E is at the

samelatitude as the ocean Regions C and D, and its seasonal variations should

most properly be comparedto theirs.

Table i indicates that the central Sahara has a meancloud cover of 9.34 in

July which increases to 18.5_ in January, with the mid and high altitude noon

cloud cover changing from 2_ in July to 11.34 in January. While the solar

insolation decreases by 160.4 W/m2 from July to January, the net radiation

drops only about half as much. Comparingwith colatitude regions C and D in

July, we see that the bright, hot desert is a very weak (8.3 W/m2) energy

absorber compared to 117.8 W/m2 for Region C and 66.8 W/m2 for Region D. In

January, though, all three are comparable energy sinks (-60 to -72 W/m2).

The African rain region (F) has a total cloud cover of approximately 60_ in

both July and January, but the net radiation still changeswith the season.

The solar insolation increases by 16.5 W/m2 from July to January, but the net

radiation jumps 43 W/m2 or 2.5 times as much. The increase in net radiation
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is associated with changes in the cloud fields. The average noon/midnight

cloud amount is approximately 60_ in both months, but in January both the

albedo and the OLRhave decreased comparedto July. This is related to a

phase change in the diurnal cloud cycle. In January, the noontime cloud

fraction has decreased and the midnight cloud fraction has increased compared

to July.

Figure 15 shows the population (TAodays) versus net radiation for Regions E

and F in July 1979. In the desert region (E), the relatively clear regions

dominate. Dry desert has a relatively high albedo which, however, varies

considerably with location. Note in July (Fig. 15a) that cloud cover

decreases when the net radiation decreases. This is the opposite of what is

observed in ocean or rain forest regions. Figure 16a shows the associated

albedo and OLR. For the mostly clear regions, both the OLRand albedo

increase with decreasing net radiation.

In the rain region (Figs. 15b and 16b) the clouds dominate. The mostly clear

regions are grouped tightly about the meannet radiation of 13.9 W/m2, but

both the high and low net radiation measurementsare associated chiefly with

the partly cloudy and overcast conditions. The cloud cover shows a U-shape

with the minimumat the meannet radiation and then increases in both the high

and low net radiation directions. Both the albedo and OLR(Fig. 16b) tend to

decrease with increasing net radiation.

The graphs for January are similar in form to those for July but with a shift

to lower net radiation over the Sahara and to higher values over the African

rain belt. Figures 17 and 18, for the rain belt only, illustrate this shift.

There are still a few negative net radiation measurementsshown in Fig. 17,

25



but they represent less than 4_ of the observations. In Fig. 18, in the (-25

to -50 W/m2) bin, the albedo is greater for the diurnal partly cloudy case (20

to 80_ cloud cover) than for the overcast case (cloud cover >80_). There is

only one target area day in each category. The overcast TA was i00_ cloud

covered both at noon and midnight, but 22_ of the daytime clouds were clas-

sified as cirrus (low albedo). The partly cloudy case was 84_ cloud covered

at noon, but the cloud cover decreased to 47_ at midnight. In the partly

cloudy case, the daytime clouds were all associated with high albedos. This

case emphasizes that albedo and total cloud fraction are not always closely

related.

The phase of the diurnal cloud cycle can effect the net radiation. A rela-

tively clear day followed by overcast conditions at night causes the net

radiation to increase. The reverse phase will decrease the net radiation. A

clear day allows the absorption of a large percentage of the top-of-the-

atmosphere insolation. A high percentage of mid or high clouds at night will

sharply reduce the loss of radiative energy at night. Figure 19 shows for the

six study regions the difference (noon OLRminus midnight OLR)as a function

of the net radiation for July 1979. Figure 20 shows the samequantity for

January 1980. Consistently_the four ocean regions and the African rain area

indicate that for algebraically small net radiation the noontime OLRis

smaller than the midnight OLR. This indicates a decrease in cloud amount

and/or altitude at night. For high net radiation, however, the reverse

occurs: the midnight radiation is lower than the noon OLR. This high net

radiation effect is visible also in the desert. The albedo plots (Figs. 7,

ii, 14, 16, and 18) also indicate that the low net radiation areas are

brighter at noon than the high net radiation areas. Excepting desert regions,

this higher albedo is due to a combination of more and thicker clouds.
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Figures 8 and 9 indicate temporal patterns of cloud fields moving across the

study target areas causing the net radiation to vary as cloud types and cloud

cover change. It has also been indicated that the albedo of the region is one

of the most important factors governing the net radiation. Thus when we sort

by net radiation, bright scenes will be more numerousat low net radiation.

Similarly, low OLRat night will tend to be associated with higher net

radiation provided the albedo does not dominate. However, it is the popula-

tions (see Figs. 6, I0, 13, 15, and 17) which govern the importance of the

high or low nighttime OLR.

In the African rain area (F), the phase of the diurnal cloud cycle is obvious-

ly an important factor. The average noon OLRis 12.5 W/mz larger than the

midnight OLRin July, and this increases to 21.2 W/m2 in January. Further, in

both months over 80_ of the observed cases had lower OLRat midnight. This

actually is a commoncharacteristic of both cloudy and clear land regions and

is driven by the radiative cooling of the surface. However, here the in-

creased cloud cover associated with the decrease in OLRindicates that diurnal

cloud cover/type changeshelp force the diurnal OLRcycle. In the four ocean

regions there is little difference in the average noon and midnight OLR(Table

I) in both July 1979 and January 1980. However, if examined in detail all

four regions (A, B, C, and D) in January and Region C, east of Taiwan, in July

have numeroushigh net radiation measurementswhere diurnal changes in the

cloud cover/type decrease the OLRat midnight by 6 to 20 W/mz comparedto

noon. Thin, mid-altitude clouds are the dominant clouds identified over

target areas with high net radiation.
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In the desert region (E) the low heat capacity of the dry, sandy surface is

the dominant factor in the diurnal changes in the OLR. The surface tempera-

ture rises steadily during the day and then drops rapidly after sundown.

However, as shownin Table i, there is a significant increase in cloud cover

at night, and this undoubtedly contributes to the noon minus midnight dif-

ference in the OLR.

The incident solar insolation is a maximumat local noon. Thus, while the

Nimbus-7 noon and midnight measurementscannot entirely define the diurnal

cycle, they can indicate its effect on the net radiation. A fully quantita-

tive analysis of the effect of the diurnal cloud cycle on the net radiation

will require data sets with more adequate diurnal sampling.

6. Comparisonwith SomeOther Equatorial Regions

To set the equatorial study regions in context, we briefly review some

neighboring regions. This is not, however, a survey of the entire tropics.

The first group of seven regions we consider lie in the ocean between 0° and

180S latitude and stretch westward from the coast of Peru past Australia; they

include study Regions A and B. The second group of three regions consist of

the tropical rain belt in South America, Africa (study Region F) and the

island continent of Indonesia. These comparison regions are indicated on the

map in Fig. 5. Using these additional study regions plus the global maps

(Figs. i through 4) it is shown that aside from central Sahara (Region E) the

regions studied in Section 5 are not atypical.

Table 2 lists the characteristics of the seven southern equatorial ocean

regions in July and January. The average top-of-the-atmosphere insolation
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varies from about 352 W/m 2 in July to 455 W/m 2 in January. In July the net

radiation has a deep minimum of -54.3 W/m 2 in Region i just off the Peruvian

coast. There is a corresponding ocean maximum of 38.4_ in the albedo, and the

diurnal cloud cover averages 64.4_. Fairly warm, mid-altitude clouds dominate

and there" are almost no high clouds. Thus, the clouds sharply increase the

reflected solar radiation without greatly decreasing the OLR. Region 2 has an

intermediate net radiation of -10.3 W/m 2. The other 5 regions have positive

net radiation ranging from 3 to I0 W/m 2 despite the fact that the total cloud

cover ranges from 21_ to 70_. In January, with increased solar insolation,

all seven regions have high net radiation with a range of only 13 W/m 2 among

them. The range in total cloud cover increases in January and varies from 20_

to 90_. Thus, study Regions A (7) and B (3) illustrate that in the tropics,

wide ranges in cloud types and cover may result in the same net radiation.

The characteristics of the three equatorial land rain regions are given in

Table 3. Although all three straddle the Equator, the latitude distribution

of the regions vary depending on local land configurations and climate. This

results in a slightly wider range in solar insolation among these three

regions than occurred among the previous seven regions. This is particularly

so in January where the range amounts to 20 W/m 2. The centroid of the South

and Central American region (i0) lies farther north than that of the other

regions, so that its solar insolation is actually 5 W/m 2 higher in July than

in January. Similarly its net radiation is a little larger in July. As might

be expected, the Indonesian rain area has a slightly higher net radiation than

the other two. Its climate is dominated by the warm surrounding seas. For

the equatorial regions, the Sun is most directly overhead at the spring and

fall equinoxes so that July and January do not represent extremes in the solar

insolation as they do at higher latitudes. However, even with the limited
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range in solar insolation shown, variations in the net radiation consistently

track changes in the top-of-the-atmosphere insolation.

The sharp decrease in net radiation caused by bright low or mediumaltitude

clouds with reasonably warmcloud tops is shownboth by study Region D in July

and Region i (Table 2) in January. Such regions are not commonin the

tropics, but they do occur. As shownin Figs. i and 3, extreme highs in the

net radiation, such as in study Region C east of Taiwan, tend to occur a

little poleward of the subsolar point. A seasonal survey will be required to

see if such hot spots occur often over equatorial oceans.

The central Sahara/Arabian deserts, Study Region E, does appear to be unique

because of its immensecontinental area with very high surface albedos. These

produce a large net radiation sink in the northern tropics with important

climatological ramifications (see for exampleSmith, 1986). However, the net

radiation in this region is dominated not by clouds but by its surface

characteristics.

7. Conclusions and Discussion

A comparison of the Nimbus-7 cloud and Earth radiation budget data sets in the

tropics during the months of July 1979 and January 1980 illustrate the wide

effects that clouds have on the tropical radiation budget. A brief general

survey of the tropics was followed by a detailed examination of six study

regions, each three to six million square kilometers in area (Fig. 5). Daily

values of the cloud and radiation budget parameters were examined. These

regions exemplify the range in cloud/net radiation interactions in the

tropics. Our conclusions are:
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i. Despite cloud cover ranging up to 90_, tropical rain and monsoon

areas are regions of high net positive radiation. The bright,

deep convective storm centers tend to have negative net radiation,

but these are surrounded by and temporally alternate with large

bands of thin medium and high altitude clouds associated with very

high net positive radiation. This combination results in high

positive values for the regional net radiation.

, Both in the tropical rain regions and over the tropical ocean in

general, radiation budgets are dominated not by cloud amount but

by cloud types.

With the same solar insolation, ocean regions with average

cloud cover ranging from 20% up to 90% can and often do show

the same monthly averaged net radiation.

Large regions of bright (thick) low or low-medium altitude

clouds over the ocean sharply depress the net radiation by

sharply increasing the reflected solar radiation without

markedly reducing the OLR. In the tropics and subtropics,

such regions occur off the west coast of Africa and the

Americas and are associated with relatively low sea-surface

temperatures.

In July and January the highest net radiation regions tend

to lie just poleward of the subsolar point. They have about
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509 cloud cover. The associated clouds have low cloud top

temperatures and moderate to low albedos.

.

Over the tropical ocean, the highest net radiation days usually

show a marked increase of clouds with a low albedo and cool or

cold cloud top temperatures. The effective cloud top temperatures

derived from the Nimbus°7 THIR 11.5 #m radiances indicate that

they usually lie between 2 and 4.5 km above sea level. This would

tend to indicate mid-altitude stratus clouds. However, many of

these clouds may actually be thin and perhaps broken high altitude

cirrus which allow some warm surface radiation to pass through.

4.

The African rain region in July and January shows a marked

increase in high cloud cover at midnight compared to noon. This

is associated with a considerable drop in the OLR, which in turn

increases the diurnal net radiation. Although the Nimbus

noon/midnight measurements can identify diurnal cloud changes and

some of their affect on the radiation budget, better diurnal

information is needed.

. As expected, the net radiation in the central Sahara is little

affected by clouds. Unlike the other study regions, the lowest

net radiation is associated with the lowest cloud cover. Inter-

estingly Ramanathan et al. (1989) listed the Sahara in April as

one region where the clouds tend to increase the net radiation.

Our findings do not contradict this.
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. In the subtropics and at higher latitudes where there are large

seasonal variations in the insolation, regional variations in the

net radiation are large for high insolation and moderate for low

insolation values.

From a climatological point of view our study indicates that tropical clouds

can have strong effects, both positive and negative, on the average net

radiation. At present, there is a tendency for the positive and negative

effects to balance for the tropics as a whole (see also Ramanathan et al.,

1989 and Ardanuy et al., 1989a). The ENSO event of 1982/83 caused large

perturbations in the normal tropical albedo and OLR fields, but relatively

small changes in the net radiation field (Ardanuy et al., 1987; Ardanuy and

Kyle, 1986). Tropical climate changes which increase the desert areas and/or

thick low stratus over the ocean would, presumably, act to decrease the

absorbed net radiation. The effect on the net radiation of a general increase

in tropical cloudiness would depend strongly on the cloud types involved.

In the future we plan to complete our survey of both tropical and extratrop°

ical regions and also to include the months of April and October in order to

review the changes in all four seasons. In addition, we hope to check our

conclusions both with an improved Nimbus-7 scanner Earth radiation budget data

set, scheduled to become available in the fall of 1989 (Hucek et al., 1989),

and with the new Earth Radiation Budget Experiment (ERBE) data set (Barkstrom

et al., 1989).
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FIGURE CAPTIONS

Figure i. Monthly averaged net radiation for the month of July 1979 derived

from (a) the Nimbus-7 Earth Radiation Budget scanner observations

by the Sorting into Angular Bins (SAB) algorithm and (b) the

original scanner algorithm.

Figure 2. Monthly averaged noon cloud cover for July 1979 as recorded in the

Nimbus-7 cloud data set.

Figure 3. Nimbus-7 observed monthly averaged net radiation for January 1980

(see Figure i).

Figure 4. Monthly averaged noon cloud cover for January 1980 (see Figure 2).

Figure 5. Map showing the six study regions A to F defined in Table i, as

well as the comparison regions I to i0 discussed in Section 6 and

Tables 2 and 3. There is an overlap between the two groups: 3=B,

7=A, and 8-F. Region A extends beyond both the northeast and

northwest coasts of Australia. Region 9 covers land regions in

New Guinea, Indonesia, and the Malay Peninsula; it is in several

separate pieces and includes some nearby ocean. The individual

target areas in each region are also shown.

Figure 6. Bar chart showing the percent of TA days with the indicated net

radiation for July 1979 for (a) study Region A, ocean north of

Australia, and (b) study Region B, ocean west of Peru (see Fig.

5). Between -125 and +125 W/m 2 the net radiation is divided into
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I0 bins each 25 W/m 2 wide. Two additional bins show net radiation

> +125 or < -125 W/m 2. Three target area cloud cover categories

are also indicated: cloud cover <20_, _20_ but !80_, and _80_.

The total TA-day population (Pop) and mean target area cloud cover

(T-CLD) for each bin is given in tabular form above the bar chart.

The top table lists the general characteristics of the region:

mean net radiation (NR), diurnally averaged outgoing longwave

radiation (OLR), albedo (A), and cloud cover (cloud). The total

number of target area (TA) days used in the _udy are also given.

Figure 7. Diurnally averaged albedo and outgoing longwave radiation (OLR)

versus net radiation for three categories of target area cloud

cover: cloud cover <20_; _20_ but !80_; >80_. Plots are for July

1979 for (a) study Area A and (b) study Area B. The populations

corresponding to each cloud category are shown in Fig. 6.

Figure 8. Plot of noon cloud cover and diurnally averaged albedo and net

radiation versus day of the month for July 1979 for Nimbus-7 ERB

target area No. 903 in study Region B, ocean west of Peru (see

Fig. 5). The center of the target area lies at latitude 6.75=S,

longitude 123.75°W.

Figure 9. Plot of noon cloud cover and diurnally averaged albedo and net

radiation versus day of the month for January 1980 for target area

926, latitude 6.75°S, longitude 128.25°E, in study Region A north

of Australia (see Fig. 5).



Figure I0. Bar chart of the percent of TA days with the indicated net

radiation distribution during January 1980 for (a) study Region A

and (b) study Region B. Refer to Fig. 6.

Figure Ii. Albedo and outgoing longwave radiation (OLR) versus net radiation

for three cloud cover categories for January 1980, (a) study

Region A and (b) study Region B. Refer to Fig. 7.

Figure 12. Nooncloud types versus diurnal net radiation for January 1980 (a)

study Region A, ocean north of Australia and (b) study Region B,

ocean west of Peru.

Figure 13. Bar chart of the percent of TA days with the indicated net

radiation during July 1979 for (a) study Region C, ocean east of

Taiwan and (b) study Region D, ocean west of Baja California.

Refer to Fig. 6.

Figure 14. Plots of albedo and outgoing longwave radiation (OLR) versus net

radiation for three cloud cover categories for July 1979 for (a)

study Region C and (b) study Region D. Refer to Fig. 7. The

location of the study regions are given in Fig. 5.

Figure 15. Bar chart showing the percent of TA days with the indicated net

radiation for July 1979 for (a) study Region E, central

Sahara/Arabian Desert and (b) study Region F, African rain belt

Refer to Fig. 6.
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Figure 16. Plot of albedo and OLRversus net radiation for three cloud cover

categories during July 1979 for (a) study Region E, desert and (b)

study Region F, African rain belt. Refer to Fig. 7.

Figure 17. Percent of TA°days with the indicated net radiation for January

1980 for the African rain belt (F). Refer to Fig. 6.

Figure 18. Plot of albedo and OLRversus net radiation for three cloud cover

categories during January 1980 for (a) study Region E, desert, and

(b) study Region F, African rain belt. Refer to Fig. 7.

Figure 19. Plot of noon minus midnight outgoing longwave radiation (OLR)

versus net radiation for the six study areas A to F (Fig. 5)

during July 1979.

Figure 20. Similar to Figure 19, but for January 1980.
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